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Abstract. The σt± strength distribution as a function of the excitation energy is investigated in the
framework of the Quasiparticle Random Phase Approximation. The results are compared with the available
experimental data for 54Fe and with the results of recent shell model calculations. It is demonstrated that
the full single-particle space has to be used in order to describe the GT strength function correctly.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.60.Jz Hatree-Fock and random-
phase approximations – 21.60.Cs Shell model – 24.30.Cz Giant resonances – 25.40.Kv Charge-exchange
reactions – 25.45.Kk Charge-exchange reactions

1 Introduction

The investigation of the Gamow-Teller (GT) strength
function, i.e. the distribution of the strength of the σµt+
or σµt− operators as a function of the excitation energy is
of interest not only in nuclear physics, but it has also im-
portant applications in astrophysics. Its precise knowledge
is requested for nucleosynthesis problems and in the study
of supernova evolution [1]. It also plays an important role
in predicting neutrino scattering cross sections used to de-
termine the detector efficiency in solar neutrino flux mea-
surements [2]. In nuclear physics the GT strength function
is important in connection with the problem of missing GT
strength occurring in the (p,n) charge-exchange reactions
at intermediate energies [3], and in connection with the
question of a possible renormalization of the axial vector
coupling constant of weak interactions in nuclear media,
gA [4]. The GT transitions play a leading role in muon
capture, in pion charge-exchange reactions and in other
low and medium energy processes in atomic nuclei.

The Random Phase Approximation (RPA) as well as
multiparticle shell model calculations give a reasonably
description of the shape of the GT strength function at low
excitation energies and in the giant resonance region. How-
ever, agreement with the experimental data is achieved
only after application of a quenching factor of roughly 0.8
to the transition amplitude. From the theoretical point
of view one is therefore interested in finding a mecha-
nism which is responsible for the transfer of GT strength
towards higher excitation energies and which simultane-
ously allows one to reproduce the strength distribution
in the giant resonance region and below it. Usually the
shift of the GT strength to higher excitation energies is

explained by introducing an interaction between particle-
hole 1p-1h (one-phonon states) and 2p-2h (two-phonon
states) [5]. Particle-hole excitations are usually considered
on the basis of RPA and their interaction with the 2p-
2h states in the framework of the “second random phase
approximation” (SRPA) [6,7] or in the fragmentation ap-
proach [8]. Additional ground state correlations could be
included in the SRPA [9,10] leading to the “extended ran-
dom phase approximation” (ERPA). Sum rules (energy-
weighted moments) for the transition strength of one-body
operators can be derived in all the mentioned approxima-
tion schemes [9,11]. Based on the properties of these sum
rules, in particular the conservation of the zeroth and first
energy-weighted moments in RPA, SRPA and the frag-
mentation approach, we conclude that the inclusion of an
interaction between 1p-1h and 2p-2h states is not capable
of changing the strength distribution in the desired way.
Therefore a satisfactory description of the general features
of the GT strength distribution in the framework of RPA
seems to be essential. We demonstrate that those parts of
the residual interaction coupling single-particle orbits with
different radial quantum numbers are essential in order to
achieve (at least qualitatively) a reasonable description of
the strength distribution. A good overall behaviour of the
σt− strength function at low energies is then obtained and
the position and strength of the giant GT resonance can
be reproduced. Simultaneously a large fraction of the σt−
strength is shifted towards higher excitations, forming new
collective states. These collective states are built up from
1p-1h excitations whose single-particle orbitals belong to
different major shells. From this it is concluded that it
is absolutely necessary to use a full single-particle space
in all GT strength calculations. This statement applies in



38 K. Junker et al.: Gamow-Teller strength function in spherical nuclei

particular also to large shell model calculations, where the
used single - particle space is limited by the large size of
the matrices to be diagonalized.

Since now experimental data for both, σt+ and σt− are
available, it seemed important to prove whether the pro-
posed mechanism is successful in describing both strength
functions simultaneously. The calculations have been per-
formed using a phenomenological residual interaction in
the framework of the quasi-particle random phase approxi-
mation (QRPA), the latter being an extension of the usual
RPA to non-closed shell nuclei.

2 Theory

2.1 The nuclear model

The model Hamiltonian used in the present work has been
described in detail in [8,13] and only a short descrip-
tion will be given here. It consists of a mean field part
(represented by separate single-particle potential wells
of Woods-Saxon shape for neutrons and protons respec-
tively), a superconducting monopole pairing between like
particles, and a particle–hole residual interaction in sepa-
rable form.

H =
∑
τ=n,p

(Hτ
mean +Hτ

pair) +Hres., (1)

Hτ
mean =

∑
jτmτ

Ejτa
†
jτmτ

ajτmτ , (2)

Hτ
pair =

Gτ
4

∑
jτmτ ,j′τm

′
τ

(−1)jτ−mτ+j′τ−m′τ

× a†j′τm′τa
†
j′τ ,−m′τajτ ,−mτajτmτ (3)

Hres. = −2κ01
1

∑
µ

Q†1,µQ1,µ, (4)

with

Q1,µ =
∑

jp,mp,jn,mn

〈jp,mp|U(r)σµt−|jn,mn〉

× a†jp,mpajn,mn . (5)

Here κ01
1 is the effective coupling constant of the residual

interaction, a†jp,mp (ajn,mn) is the creation (destruction)
operator of a proton (neutron) in the nljm-single particle
state, U(r) is the radial form factor taken as [12]

U(r) =
dW (r)
dr

, (6)

and W (r) is the central part of the single-particle shell
model potential.

The case of a strong attractive particle-particle inter-
action which has been shown to be especially important
for low energy σt+ transitions [13] should be discussed

separately. Here we would like to note only that there is
a definite contradiction between the description of the β+

decay of the proton rich spherical nuclei and the β− de-
cay of neutron rich nuclei when using the particle-hole and
particle-particle interactions simultaneously [14].

The diagonalization of the model Hamiltonian is done
in two steps. First, we make the transition to the quasipar-
ticle operators by means of the Bogoliubov transformation
(for protons and for neutrons separately):

αj,m = vjaj,m + (−1)j−muja
†
j,−m. (7)

In the next step the charge-exchange 1+ phonons are in-
troduced

Ωµ,i =
∑
jp,jn

{ψijp,jn [αjpαjn ]1,µ

+ (−1)µφijp,jn [αjpαjn ]†1,−µ} , (8)

where

[αjpαjn ]λ,µ ≡
∑

mp,mn

〈jpmpjnmn|λµ〉αjp,mpαjn,mn

and 〈jpmpjnmn|λµ〉 is a Clebsch-Gordan coefficient. The
normalization condition for the phonon amplitudes is∑

jp,jn

{ψijp,jnψ
i′

jp,jn − φ
i
jp,jnφ

i′

jp,jn} = δi,i′ . (9)

The QRPA Hamiltonian is then obtained as

H =
∑
jpmp
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†
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∑
jnmn

εjnα
†
jnmn

αjnmn

−1
3
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where

Di
+ =

∑
q

hqu
+
q g

i
q, Di

− =
∑
q

hqu
−
q w

i
q,

giq = ψijp,jn + φijp,jn , wiq = ψijp,jn − φijp,jn ,
u±q = ujpvjn ± vjpujn , hq≡h(jp, jn)≡〈jp‖U(r)σt−‖jn〉,
and the εj are the single-quasiparticle energies. The RPA
equations are obtained as usual by first calculating the
average value of H over the one-phonon state Ω†µ,iΨ0 (Ψ0

is the ground state of a double even nucleus) and then
using the variational principle

δ
{
〈Ψ∗0Ωµ,iHΩ†µ,iΨ0〉 − 〈Ψ∗0HΨ0〉 − ωi[

∑
q

giqw
i
q − 1]

}
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(11)

The normalization of the phonon amplitudes is used as
a subsidiary condition. As a result we get a system of
equations
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defining the phonon amplitudes ψiq, φ
i
q (εq ≡ εjp + εjn).

The amplitudes of the transitions from the ground state
to the 1+ one–phonon excited states are given by

b+µ (1+, i) =
1√
3

∑
jp,jn

〈jp‖σt−‖jn〉

× (vjpujnψ
i
jp,jn + ujpvjnφ

i
jp,jn), (13)

b−µ (1+, i) =
1√
3

∑
jp,jn

〈jp‖σt−‖jn〉

× (ujpvjnψ
i
jp,jn + vjpujnφ

i
jp,jn). (14)

The parameters of the single-particle potentials and
the monopole pairing constants are taken from [15]. Only
one parameter will be varied during the calculations – the
effective coupling constant of the residual interaction κ01

1 .
The calculated GT strength function is given by the run-
ning sum

S±(E) =
∑

i:Ei≤E

∑
µ

|b±µ (1+, i)|2 . (15)

2.2 Sum rules

The energy-weighted moments of the strength of the GT
transition operators σµt± are defined by

S±k =
∑
α,µ

Ekα
∣∣〈α|σµt±|g.s.〉∣∣2 (16)

for any integer k. Eα is the excitation energy. It is well
known [9] that the difference of the zero order moments
S−0 − S+

0 and the sum of energy-weighted moments S−1 +
S+

1 are conserved when going from RPA to SRPA or the
fragmentation approach. One has therefore(

S−0 − S+
0

)
RPA

=
(
S−0 − S+

0

)
SRPA

(17)

and (
S−1 + S+

1

)
RPA

=
(
S−1 + S+

1

)
SRPA

. (18)

In the fragmentation approach even simpler relations
arise:

S±0
∣∣
RPA

= S±0
∣∣
fragmentation

(19)

and
S±1
∣∣
RPA

= S±1
∣∣
fragmentation

(20)

For details we refer the interested reader to the original
literature [11]. We refer here to this approach because it
facilitates the following discussion on some discrepancies
which we believe to be present in the published literature.
The results of this work, however, have been obtained en-
tirely in the framework of the QRPA.

The zeroth energy-weighted moment (17) is the well
known Ikeda sum rule [16]. Its value is equal to 3(N −Z).
The degree to which this sum rule is fulfilled may be used
as a test for the completeness of the used single-particle
space. In the fragmentation approach it can be shown [11]

that S0 and S1 are determined by the 1p-1h states only
and do not depend on the interaction between 1p-1h states
and 2p-2h states or more complex states or on any inter-
action in the 2p-2h space. This is a direct consequence of
separating the ground state wave function from the space
of the excited states [11]. The limitation arising from the
conservation of the zeroth and first energy-weighted mo-
ments can be removed if one considers the ground state
to be lying in the same space as the excited states.

It is known that the interaction between 1p-1h and 2p-
2h states, responsible for the width of the giant resonance,
causes some redistribution of the transition strength over
the excitation energies [17,18]. The conservation of zeroth
and first moments has, however, a severe consequence. We
discuss this in the framework of the fragmentation ap-
proach, where S±0 and S±1 are separately conserved, eqs.
(19) and (20). Due to the fact that the total transition
strength S±0 and the energy centroid S±1 /S

±
0 are simulta-

neously conserved, we have the following situation. If on
behalf of an interaction between 1p-1h states and more
complex states a large fraction of the strength of the gi-
ant GT resonance could be shifted to higher energies, then
some strength has necessarily to be shifted into the low
energy region in order to conserve the first moment, S±1 .
As a result the strength distribution in the giant reso-
nance region and below it would change completely. Such
an effect has been found by shell model calculations of the
GT strength function [19]. Enlarging the excited states
space by including 2p-2h configurations without changing
the ground state, the authors of [19] observed exactly the
above described effect. The authors of [7] performed GT
strength function calculations for the nuclei 48Ca, 90Zr and
208Pb in the framework of RPA and SRPA, using a realis-
tic two-body interaction based on a Brueckner G-matrix
for nuclear matter. In order to apply the nuclear matter
G-matrix to finite nuclei, the local density approximation
was used. In case of 208Pb the authors of [7] found already
at the level of RPA a large fraction of strength above 20
MeV excitation energy originating from a coupling of the
GT resonance with high lying 2~ω particle-hole 1+ excita-
tions. The main conclusion of [7] is that a large fraction of
the total GT strength is shifted towards higher excitation
energies mainly due to the interaction between 1p-1h and
2p-2h states. Simultaneously, the strength in the giant res-
onance region and below it is reduced. The energy of the
GT resonance is practically not decreased and for 208Pb
shifted even to higher energies. Due to the large neutron
excess in heavy nuclei the σt− strength measured in (p,n)
reactions is much stronger than the σt+ strength related to
(n,p) reactions. Therefore S+

0 is only a small fraction of S−0
and one can assume without making too big an error that
S−0 and S−1 practically do not change when going from
RPA to SRPA. One has then S−0,1|RPA ≈ S−0,1|SRPA. Then,
however, the arguments presented above for the fragmen-
tation approximation apply and one sees immediately that
there is a contradiction between the results quoted in [7]
and the conservation of S0 and S1.

The arguments presented above have been the basic
motivation to undertake the present work, aiming to un-
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Fig. 1. Running sum S+(E) for the σt+ transition
operator as a function of the excitation energy of the
residual nuclei. The shaded area represents the ex-
perimental strength function for the 54Fe(n, p)54Mn
reaction [20]. a), b), c) and d) represent QRPA cal-
culation for various values of κ01

1 ( a: −0.23/A, b:
−0.43/A, c: −0.63/A and d: −0.83/A)

Fig. 2. Running sum S−(E) for the σt− transition
operator as a function of the excitation energy of the
residual nuclei. The notation is the same as in Fig. 1.
The experimental data for the 54Fe(p, n)54Co reaction
are from [21]

derstand the GT strength function problematic at the
RPA level.

3 Results and discussions

Next we present the results of our calculations of the GT
strength function (15) for 54Fe and compare them with
detailed experimental studies of the σt+ and σt− strength
functions by means of the (p,n) [20,21] and (n,p) [20] re-
actions on 54Fe. These experimental results together with
our theoretical evaluation are shown in Figs. 1, 2 and 3.

Figure 1 shows the experimental running sum S+(E)
from the 54Fe(n,p)54Mn reaction [20] in comparison with
the theoretical results calculated for different values of
κ01

1 (−0.23/A, −0.43/A, −0.63/A and −0.83/A). The dis-
tribution of the σt+ strength at low excitation energies
is determined by the positions of the two–quasiparticle
states. There is one collective state which absorbs the main
part of the transition strength. With increasing absolute

value of the effective interaction constant |κ01
1 | the collec-

tive state is shifted towards higher excitation energies and
its strength decreases. Simultaneously the total transition
strength becomes smaller. The calculated and measured
strength distributions [20] are in qualitative agreement.
It should be mentioned that in the low excitation energy
region a much richer experimental spectrum is observed
than calculations show. The total σt+ strength measured
in the (n,p) reaction up to excitation energies of 10 MeV
is equal to 3.1±0.6 (all energies are measured with respect
to the ground state of the residual nuclei). The calculated
QRPA strength for this energy range lies between 4.2 and
6.5 depending on the value of |κ01

1 |. A recent shell model
calculation [22] needs a quenching factor of 0.77 for the
σt operators in order to reproduce the experimentally ob-
served transition strength. The work of [22] contains also
a review of previous calculations of S± in 54,56Fe. Vari-
ous shell model calculations and the QRPA with different
residual interactions give usually higher values for S+ than
those obtained in the present work. An exception is the
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Fig. 3. σµt
− strength function as a function of ex-

citation energy. Experimental data (shaded area) for
the 54Fe(p, n)54Co reaction are from [21]. The theo-
retical calculation for κ01

1 = −0.43/A corresponds to
curve b) of Fig. 2

QRPA case with the particle-particle interaction of [13]
which gives S+ = 4.2. The relative low value of S+ in our
present calculation is due to the residual interaction used.
The radial form factor U(r) varies rapidly with radius and
differs from zero only in the surface region. Therefore the
matrix elements between single–particle states with dif-
ferent radial quantum numbers contribute appreciably. In
this way a mixing not only between the usual spin–orbit
partners of the valence shell occurs (as should be the case
in shell model calculations), but is present also between
all the other single particle states. The influence of this
mixing becomes especially important in the case of σt−
transitions, when the Gamow-Teller resonance can be ex-
cited.

The results of our calculations of S−(E) for the same
set of values of κ01

1 are shown in Fig. 2 together with
the GT strength function measured in the 54Fe(p,n)54Co
reaction [20,21] (data are taken from Tables 1 and 3 of
[21]). The results of [20] are close to those of [21] and
have larger error bars. Figure 3 shows a comparison be-
tween the experimental and theoretical (κ01

1 = −0.43/A)
strength functions plotted as a function of excitation
energy.

The following observations can be made:
(i) a collective GT state located above the conventional
GT giant resonance appears if the residual interaction is
strong enough. This state is formed on the basis of two–
quasiparticle states in which neutron and proton quasi-
particles occupy levels with different radial quantum num-
bers;
(ii) as |κ01

1 | increases, this collective state absorbs a
steadily-increasing part of the total σt− strength and is
shifted gradually to higher excitation energies;
(iii) accordingly, the conventional giant resonance around
10 MeV loses part of its transition strength and is
shifted only slightly towards higher excitation energies.
The reason for this positional stability are additional two-
quasiparticle poles appearing in the QRPA secular equa-
tion located above those forming the giant GT resonance.
It should be mentioned that the standard way of obtain-
ing the value of the effective coupling constant from the

position of the giant resonance meets difficulties in this
case.

Introducing the residual interaction in its present form
allows to describe the main features of the σt± strength
distribution and to reproduce the experimentally observed
GT transition strength without any additional effective
charges [23] or quenching factors [22].

For all values of κ01
1 the difference between the total

σt− and σt+ strength is

S−0 − S+
0 = 5.61.

This value is somewhat less than S−0 − S+
0 = 6.0 pre-

dicted by the Ikeda sum rule [16] for 54Fe. The origin of
this difference is mainly the small nonorthogonality of the
neutron and proton single–particle wave functions due to
the difference in the single–particle potential wells.

4 Conclusion

The present work leads to the following conclusions. It
is possible to describe in the QRPA simultaneously the
strength functions of σt± transitions in 54Fe. The use of a
separable nonlocal residual interaction allows a qualitative
description of the σt+ strength function. The calculated
S+ strength below 10 MeV is between 4.3 and 5.4 and to
be compared with 3.1±0.6 obtained experimentally in the
(n,p) reaction [20]. The calculated σt− strength function
agrees with the strength function obtained from the (p,n)
reaction in the low excitation energy region and in the
giant resonance region without any quenching factors. The
rest of the GT strength is absorbed by high-lying collective
1+ states formed around two-quasiparticle states having
different number of nodes in the radial part of their single-
particle wave functions, i.e. belonging to different major
shells. This is basically the reason why it is important to
use a large single-particle space in the calculation of the
σt− strength function.
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